Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Paeonol enhances TRAIL-induced apoptosis of human lung cancer cells by upregulating death receptors-4 and 5 via ROS-JNK/ERK-CHOP signaling

Yanqing Fan1, Xiaoyan Chen2, Guizhi Zhang3

1The Third Affiliated Hospital of Kunming Medical University, Kunming 650106; 2Department of Western Medicine Education, Shandong College of Traditional Chinese Medicine, Yantai 264199; 3College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 43 0065, China.

For correspondence:-  Guizhi Zhang   Email: edsklt@163.com

Accepted: 19 February 2021        Published: 31 March 2021

Citation: Fan Y, Chen X, Zhang G. Paeonol enhances TRAIL-induced apoptosis of human lung cancer cells by upregulating death receptors-4 and 5 via ROS-JNK/ERK-CHOP signaling. Trop J Pharm Res 2021; 20(3):467-473 doi: 10.4314/tjpr.v20i3.4

© 2021 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To study the anti-proliferative potential of paeonol against lung cancer cells, and investigate its mechanism of action.
Methods: Cell viability after paeonol treatment was determined with 3-(4,5-dimethylthiazol-2yl)2,5-diphenyltetrazolium bromide (MTT) assay, while paeonol- and TRAIL-mediated apoptosis was assayed using flow cytometry. Western blotting was used to assay the protein expression levels of phosphorylated JNK and ERK1/2, as well as protein expressions of pro-apoptotic factors/death receptors. 2′,7′-Dichlorodihydrofluorescein diacetate (H2DCFDA) staining and flow cytometry were used to monitor paeonol-induced reactive oxygen species (ROS) in the cells.
Results: Paeonol treatment markedly reduced the proliferations of H1975 and BGC823 cells (p < 0.05). In H1975 and BGC823 cells, paeonol/TRAIL combination increased apoptosis to 88.43 and 87.21 %, respectively (p < 0.05). The levels of death receptor 4 (DR4) and death receptor 5 (DR5) were increased significantly by paeonol, relative to the control (p < 0.05). Paeonol also reduced the levels of decoy receptor-1 (DcR1) and decoy receptor-2 (DcR2), and increased the expression of CHOP (p < 0.05). The protein expression levels of survivin, Bcl-2, cFLIP and Bcl-xL were decreased, while protein levels of caspase3, caspase-8 and caspase-9 were upregulated by paeonol. Moreover, paeonol significantly upregulated p-ERK and p-JNK in H1975 and BGC823 cells, and also increased ROS levels, when compared to control (p < 0.05).
Conclusion: Paeonol exerts anti-proliferative potential on lung cancer cells through upregulation of death receptors, activation of JNK/ERK-CHOP pathway and generation of ROS. Therefore, paeonol has a therapeutic potential for the management of lung cancer.

Keywords: Paeonol, Proliferation, Reactive oxygen species, Apoptosis, Tumour necrosis factor

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates